7780 measured reflections

 $R_{\rm int} = 0.092$

1419 independent reflections

875 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A lead-halide ladder complex: catenapoly[bis(2,3-dimethylquinoxalinium) [[di- μ_2 -bromido-bis[dibromoplumbate(II)]]di- μ_2 -bromido]]

Basem Fares Ali,^a* Rawhi Al-Far^b and Salim Haddad^c

^aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, ^bFaculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan, and ^cDepartment of Chemistry, University of Jordan, Amman 11942, Jordan Correspondence e-mail: bfali@aabu.edu.jo

Received 22 April 2007; accepted 27 April 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.019 Å; R factor = 0.054; wR factor = 0.123; data-to-parameter ratio = 17.5.

In the title compound, $\{(C_{10}H_{12}N_2)_2[Pb_2Br_8]\}_n$, the asymmetric unit consists of half a cation and one-quarter of a doublybridged dinuclear anionic unit. The planar cations lies on a twofold axis that runs lengthwise through both rings. The Pb and one Br atoms are located on twofold axes, whereas the second Br atom is located on a mirror plane and the third lies on a general position. The polymeric anion forms an infinite ladder structure running along the c axis with rungs consisting of Pb and bridging Br atoms, with two octahedra sharing edges as the rungs of the ladder and sharing vertices as the rails. There are $N-H \cdots Br$ hydrogen-bonding interactions, ca 3.21 Å, linking the PbBr ladders to the cations.

Related literature

For related literature, see: Billing & Lemerrer (2005); Chakravarthy & Guloy (1997); Cui et al. (2000); Klapotke et al. (1999); Lacroix et al. (1994); Reynolds et al. (2003); Willett & Twamley (2001).

Experimental

Crystal data

$(C_{10}H_{12}N_2)_2[Pb_2Br_8]$ $M_r = 1374.04$	V = 1563.9 (6) Å ³ Z = 2
Monoclinic, $C2/m$	Mo $K\alpha$ radiation
a = 9.4180 (19) Å	$\mu = 20.99 \text{ mm}^{-1}$
b = 28.141 (6) Å	$T = 295 { m K}$
c = 6.0290 (12) Å	$0.20 \times 0.15 \times 0.10 \text{ mm}$
$\beta = 101.83 \ (3)^{\circ}$	
Data collection	

Rigaku Mercury CCD diffractometer Absorption correction: numerical (SHAPE Tracing Software; Rigaku, 2000) $T_{\min} = 0.102, T_{\max} = 0.228$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	81 parameters
$vR(F^2) = 0.123$	H-atom parameters constrained
S = 0.73	$\Delta \rho_{\rm max} = 2.30 \text{ e} \text{ Å}^{-3}$
419 reflections	$\Delta \rho_{\rm min} = -1.46 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdots Br1$ $C1-H1C\cdots Br2$	0.86	2.35	3.206 (10)	171
	0.96	3.06	3.752 (14)	130

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This research was supported by Al al-Bayt University and Al-Balqa'a Applied University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2167).

References

- Billing, D. G. & Lemerrer, A. (2005). Acta Cryst. A61, C357.
- Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakravarthy, V. & Guloy, A. M. (1997). Chem. Commun. pp. 697-698.
- Cui, Y., Ren, J., Chen, G., Yu, W.-C. & Qian, Y. (2000). Acta Cryst. C56, e552e553.
- Klapotke, T. M., Knizek, J., Noth, H. & Krumm, B. (1999). Polyhedron, 18, 839-844.
- Lacroix, P. G., Clement, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658-660.
- Reynolds, K., Willett, R. D. & Twamley, B. (2003). Acta Cryst. E59, m402m404
- Rigaku (2000). CrystalClear (Version 1.3) and SHAPE Tracing Software. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97, SHELXL97, SHELXP97 and SHELXCIF97. University of Göttingen, Germany.
- Willett, R. D. & Twamley, B. (2001). Acta Cryst. C57, 706-708.

supplementary materials

Acta Cryst. (2007). E63, m1569 [doi:10.1107/S1600536807021186]

A lead-halide ladder complex: *catena*-poly[bis(2,3-dimethylquinoxalinium) [[di- μ_2 -bromido-bis[dibromoplumbate(II)]]-di- μ_2 -bromido]]

B. F. Ali, R. Al-Far and S. Haddad

Comment

Research in the field of organic inorganic hybrid compounds is of great interest. This is because of the their special magnetic, electronic and optoelectronic properties (Cui *et al.*, 2000; Lacroix *et al.*,1994; Chakravarthy & Guloy, 1997). Haloplumbates, have demonstrated a structural diversity in lead-halide based organic inorganic hybrids (Billing & Lemerrer, 2005) in particular, in terms of the nets formed by the inorganic components, which show many distinct topologies. Examples are layers of corner sharing octahedra, linear chains of face sharing octahedra as well as a number of mixed intermediates (Billing & Lemerrer, 2005). In the crystal structure of the title complex, (I). The use of 2,3-dimethylquinoxaline (henceforth dmqxH₂) and its protonation were expected to create many important centers of interaction with the bromo-lead anion, *e.g.* NH…Br, CH…Br and possibly Br…aryl and aryl…aryl interactions.

In the title compound, (I), $\{C_{10}H_{12}Br_4N_2Pb\}_n$, the asymmetric unit consists of half of the repeated extended structure of both cation and anion. The planar cations $[C_{10}H_{12}N_2]^{2^+}$ with both nitrogen atoms protonated, lies on a 2-fold axis that runs lengthwise between the two halves (Fig. 1). The dinuclear unit $[Pb_2Br_{10}]^{6^-}$ consists of two distorted octahedra bridged by Br₃ and its symmetry related Br₃ⁱ [Symmetry code: (iii) -x + 1, -y, -z + 1). These dinuclear units are further interconnected through bridging Br₂ to form a polymeric chain structure developping parallel to the *c* axis (Fig. 2). This anion chain demonstrates a novel structural arrangement in metal halide extended anion networking.

The Pb—Br distances are similar, 3.0242 (6)–3.0448 (16) Å and fall within the range of Pb—Br distances reported previously for compounds containing lead-bromides (Reynolds *et al.*, 2003; Cui *et al.*, 2000; Klapotke *et al.*, 1999). The bond angles for linear Br—Pb—Br are in the range 170.87 (9)– 174.84 (4)°, while those for perpendicular Br—Pb—Br are in the range 83.85 (5)–94.95 (6)°. In the dmqxH₂ cation, the bond distances and angles are the same as those reported previously, within experimental error (Willett & Twamley, 2001).

The extra supramolecularity in the structure is represented by H-bonding (Table 1) leading to a layer arrangement in *ac* plane.

Experimental

A solution of $PbCl_2$ (1.0 mmol), in absolute ethanol (10 ml), was added to a stirred hot solution of 2,3-dimethylquinoxaline (1 mmol) in absolute ethanol (10 ml) containing 60% HBr (3 ml) and liquid Br₂ (2 ml). After heating to reflux for *ca* 3 h, the mixture was filtered and the filtrate allowed to stand undisturbed at room temperature. Complex (I) crystallized out over 2 days as red blocks. Crystals were filtered off, washed with diethyl ether and dried under vacuum.

Refinement

All H atoms were initially located in a difference Fourier map and were subsequently refined using a riding model, with C—H distances of 0.96 Å and $U_{iso}(H) = 1.5_{eq}(C)$ for methyl H atoms; C—H = 0.96 Å and $U_{iso}(H) = 1.2_{eq}(C)$ for aromatic H atoms, and N—H = 0.86 Å and $U_{iso}(H) = 1.2_{eq}(N)$.

Figures

anc poarte

(11)11 "bt141x"s

Fig. 1. Displacement ellpisoid (30%) plot of (I), showing the atom-numbering scheme. The complete coordination about Pb1 and cation have been included. [Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) x, y, 1 + z; (iii) 1 - x, -y, 1 - z; (iv) x, 1 - y, z; (v) 1 - x, 1 - y, 1 - z; (vi) 2 - x, y, -z].

Fig. 2. View of unit cell approximately down a axis showing H-bonding between Br1 and N3.

catena-poly[bis(2,3-dimethylquinoxalinium) [[di-µ2-bromido-bis[dibromoplumbate(II)]]-di-µ2-bromido]]

Crystal data	
$(C_{10}H_{12}N_2)_2[Pb_2Br_8]$	$F_{000} = 1232$
$M_r = 1374.04$	$D_{\rm x} = 2.918 { m Mg m}^{-3}$
Monoclinic, C2/m	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2y	Cell parameters from 3034 reflections
a = 9.4180 (19) Å	$\theta = 1.5 - 27.9^{\circ}$
b = 28.141 (6) Å	$\mu = 20.99 \text{ mm}^{-1}$
c = 6.0290 (12) Å	T = 295 K
$\beta = 101.83 \ (3)^{\circ}$	Block, red
V = 1563.9 (6) Å ³	$0.20\times0.15\times0.10~mm$
Z = 2	

Data collection

Rigaku Mercury CCD diffractometer	1419 independent reflections
Radiation source: fine-focus sealed tube	875 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.092$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 25.2^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.1^{\circ}$
dtintegrate.ref scans	$h = -11 \rightarrow 11$

supplementary materials

Absorption correction: numerical (SHAPE Tracing Software; Rigaku, 2000)	$k = -33 \rightarrow 33$
$T_{\min} = 0.102, \ T_{\max} = 0.228$	$l = -7 \rightarrow 6$
7780 measured reflections	

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0005P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 2.30 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -1.46 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	Uiso*/Ueq
Pb1	0.5000	0.57831 (3)	0.5000	0.0288 (3)
Br1	0.73667 (15)	0.65358 (6)	0.5497 (2)	0.0386 (5)
Br2	0.5000	0.58691 (8)	0.0000	0.0475 (7)
Br3	0.2733 (2)	0.5000	0.4132 (4)	0.0358 (6)
C1	0.9022 (16)	0.5680 (5)	0.167 (3)	0.038 (4)
H1A	0.9785	0.5551	0.2817	0.057*
H1B	0.8762	0.5455	0.0461	0.057*
H1C	0.8192	0.5746	0.2316	0.057*
C2	0.9527 (13)	0.6126 (5)	0.078 (2)	0.027 (3)
C4	0.9533 (12)	0.6952 (5)	0.076 (2)	0.027 (3)
C5	0.9127 (14)	0.7363 (5)	0.169 (2)	0.034 (4)
Н5	0.8598	0.7362	0.2829	0.040*
C6	0.9558 (15)	0.7782 (6)	0.080 (2)	0.045 (4)
H6	0.9249	0.8071	0.1283	0.054*

supplementary materials

N3 H3A	0.9122 (11) 0.8561	0.6516 (4) 0.6510	0.1469 0.2429) (17))	0.022 (2) 0.026*		
Atomic displacer	nent parameters	$(Å^2)$					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Pb1	0.0225 (4)	0.0360 (6)	0.0290 (5)	0.000	0.0080 (3)	0.000	
Br1	0.0285 (8)	0.0535 (12)	0.0373 (9)	-0.0104 (7)	0.0145 (7)	-0.0096 (7)	
Br2	0.0521 (15)	0.0652 (18)	0.0253 (13)	0.000	0.0083 (11) 0.000	
Br3	0.0244 (11)	0.0332 (14)	0.0494 (14)	0.000	0.0066 (9)	0.000	
C1	0.042 (9)	0.042 (10)	0.036 (9)	0.002 (8)	0.021 (8)	0.004 (8)	
C2	0.023 (7)	0.033 (9)	0.024 (8)	-0.001 (7)	0.001 (6)	0.001 (7)	
C4	0.015 (6)	0.040 (10)	0.024 (8)	0.003 (7)	0.003 (5)	0.002 (7)	
C5	0.037 (8)	0.036 (10)	0.032 (9)	-0.002 (8)	0.016 (7)	-0.003 (8)	
C6	0.045 (10)	0.055 (12)	0.037 (10)	0.011 (8)	0.013 (7)	-0.012 (8)	
N3	0.023 (6)	0.018 (7)	0.025 (6)	0.000 (5)	0.010 (5)	-0.003 (5)	
Geometric param	neters (Å, °)						
Pb1—Br2		3.0242 (6)	C4—0	25		1.372 (18)	
Pb1—Br3		3.0380 (14)	C4—N	N3		1.381 (16)	
Pb1—Br1		3.0448 (16)	C4—0	C4 ⁱ		1.40 (2)	
C1—C2		1.481 (18)	C5—C	26		1.389 (19)	
C1—H1A		0.9600	С5—Н	45		0.9300	
C1—H1B		0.9600	C6—0	C6 ⁱ		1.40 (3)	
C1—H1C		0.9600	C6—H	46		0.9300	
C2—N3		1.262 (15)	N3—I	H3A		0.8600	
C2-C2 ⁱ		1.42 (2)					
Br2 ⁱⁱ —Pb1—Br2		170.81 (9)	H1B—	-C1—H1C		109.5	
Br2 ⁱⁱ —Pb1—Br3		94.95 (6)	N3—0	$C2-C2^{i}$		119.4 (8)	
Br2—Pb1—Br3		91.71 (6)	N3—0	C2—C1		118.4 (12)	
Br3—Pb1—Br3 ⁱⁱⁱ		87.00 (6)	C2 ⁱ —	C2—C1		122.2 (8)	
Br2 ⁱⁱ —Pb1—Br1		89.76 (5)	C5—C	C4—N3		120.4 (12)	
Br2—Pb1—Br1		83.85 (5)	N3—0	C4—C4 ⁱ		117.2 (7)	
Br3—Pb1—Br1		174.84 (4)	C4—C	С5—С6		115.6 (13)	
Br3 ⁱⁱⁱ —Pb1—Br1		90.76 (4)	C4—C	С5—Н5		122.2	
Br1—Pb1—Br1 ^{iv}		91.84 (6)	C6—C	С5—Н5		122.2	
Pb1—Br3—Pb1 ⁱⁱⁱ		93.00 (6)	C5—C	C6—C6 ⁱ		121.9 (8)	
C2-C1-H1A		109.5	C5—C	С6—Н6		119.1	
C2—C1—H1B		109.5	C2—N	N3—C4		123.3 (12)	
H1A—C1—H1B		109.5	C2—N	N3—H3A		118.3	
C2—C1—H1C		109.5	C4—N	N3—H3A		118.3	
H1A—C1—H1C		109.5					

Symmetry codes: (i) -*x*+2, *y*, -*z*; (ii) *x*, *y*, *z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, *y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!\!A$
N3—H3A…Br1	0.86	2.35	3.206 (10)	171
C1—H1C···Br2	0.96	3.06	3.752 (14)	130

Fig. 2